Problema del quadrato inscritto: due matematici risolvono il problema per le curve piane lisce

165
3 Luglio 2020

Problema del quadrato inscritto

Il problema di geometria del quadrato inscritto per le curve piane è più che secolare ed è stato risolto da due matematici durante il loro periodo di quarantena.

Joshua Greene e Andrew Lobb sono due matematici che hanno analizzato una serie di forme circolari nello specifico curve lisce e continue per dimostrare che ognuna di queste contiene quattro punti che formano un quadrato: hanno risolto il problema del quadrato inscritto in forme curve piane.

Il problema conosciuto anche come congettura di Toeplitz prevede che ogni anello chiuso contenga insiemi di quattro punti che formano i vertici di quadrati di qualsiasi proporzione:

View this post on Instagram

Generations of mathematicians failed to get a handle on the rectangular peg problem. By moving it into symplectic space, Joshua Greene and Andrew Lobb finally found the answer. ••• 📖 Want to know more? Read "New Geometric Perspective Cracks Old Problem About Rectangles” at QuantaMagazine.org (link in bio) ••• 🎨 @vi_ne_te for Quanta Magazine ••• #math #mathematics #mathematicians #mathematical #ilovemath #mathisfun #mathematicalbeauty #mathisbeautiful #closedloop #geometry #fourdimensions #KleinBottle #MöbiusStrip #mathstudent #mathteacher #quanta #science #sciencenews #mathematicalart #higherdimensionalart #motiongraphicsdesign #mathematicalmodels #mathematicalvisualization #mathandart #thedesigntip #scientificillustration #visualfodder #mathfacts #interesting

A post shared by Quanta Magazine (@quantamag) on

La base è che la curva chiusa deve essere liscia e continua deve formare un anello e non deve avere angoli.

Il problema è stato affrontato da generazioni di matematici ma nessuno era riuscito a risolverlo nei contesti geometrici più tradizionali.

I matematici Joshua Greene e Andrew Lobb hanno usato gli sviluppi più recenti della matematica per cambiare prospettiva e risolvere il problema.

La difficoltà è che si tratta di curve continue che possono virare in tutti i tipi di direzioni.

Utilizzando le intuizioni matematiche precedenti applicate ad uno spazio quadridimensionale e le bottiglie di Klein, una superficie in cui non si ha la distinzione fra interno ed esterno che rappresentano le curve lisce e continue, i due matematici hanno trovato la soluzione: ogni curva ha una sovrapposizione che rappresenta le coordinate di un quadrato.

 

Un video può spiegare meglio il problema

 

Questo è un esempio di come un cambio di prospettiva può aiutare a trovare la risposta corretta a un problema.

 

Può interessarti anche:

 

 

Aree Tematiche
Matematica News Scienze
Tag
venerdì 3 Luglio 2020 - 23:01
Edit
LN Panic Mode - Premi "P" per tornare a Lega Nerd