[image]https://leganerd.com/wp-content/uploads/LEGANERD_031064.jpg[/image]
Nella ricerca per arrestare lo sviluppo e la diffusione dei tumori, ci sono stati molti tentativi di indurre i geni del cancro ad ignorare il loro “comportamento”.
In un nuovo studio, una squadra degli scienziati dell’istituto del Dana-Farber Cancer ha generato la prima molecola in grado di impedire ai geni del cancro le istruzioni relative all’ avvio del processo cancerogeno.
Lo studio, dimostra che proteine che causano gli ordini di inizio e di arresto al gene del cancro – conosciuto come “lrttore epigenetico” (Nota – tradotto letteralmente) delle proteine – possono essere designate per le terapie future destinate alla lotta contro il cancro.
La ricerca è relativa ad una tipologia di cancro raro (ma devastante) che colpisce bambini e soggetti più giovani e nessuna potenziale terapia ha raggiunto mai la fase di sperimentazione in un test clinico.
James Bradner, afferma che “Negli ultimi anni, è stato evidente che poter controllare l’attività dei geni del cancro, relativi alle istruzioni di ‘on-off’, può essere un metodo ad alto impatto sulla malattia”.
“Se potete spengere i geni di sviluppo della cellula tumorale, la cellula morirà; alternativamente, inserendosi un gene del tessuto si può indurre una cellula tumorale a trasformarsi in in una cellula più “normale”.
In questo studio, il laboratorio del Bradner ha sintetizzato una molecola che ha entrambi gli effetti.
La cura riuscirebbe a svolgere un ruolo regolatore.
Il DNA del gene è impaccato in una sostanza denominata cromatina, che è “il posto ove sono scritte” le istruzioni per cominciare o cessare l’attività. Queste istruzioni hanno ruolo di “segnalibri”.
Un altro gruppo di proteine epigenetiche, conosciuto come “cancellatrici” (ho riportato il termine tradotto, non so equivale al termine clinico italiano) può rimuovere i suddetti segnalibri.
Entrambi i tipi di proteine sono stati sperimentati dai ricercatori con successo, utilizzando molecole fatte in laboratorio o prese in natura. Il loro successo ha suscitato vivo interesse nello sviluppo delle terapie anticancro che funzionano come “ostruttrici” di tali proteine.
Una terza varietà di proteine epigenetiche che commuta i geni di “accensione o spegnimento”, sempre in grado di “leggere” i segnalibri, ha ricevuto l’attenzione scientifica limitata. Bradner ed i suoi colleghi si sono girati verso questa zona inesplorata della biologia mettendo a fuoco sulle cellule di NMC. La malattia è causata “da uno spostamento cromosomico”, nella quale due geni dai cromosomi differenti sono collegati e provocano una proteina anormale e fusa conosciuta come BRD4-NUT.
Una revisione della letteratura scientifica ha suggerito che alcuni membri della famiglia del benzodiazepine delle droghe, che include il valium, Xanax e Ativan, fossero attivi contro le proteine “del bromodomain” quale BRD4.
Con quell’ indizio, Bradner ed il suo collega hanno generato un allineamento delle molecole per vedere se riuscissero ad inibire una proteina “del lettore” del gene di BRD4-NUT.
Una molecola ibrida ha risposto in modo abbastanza convincente, i ricercatori l’hanno chiamata JQ1, per Qi.
I ricercatori hanno collaborato con quelli statunitensi per imparare più circa le proprietà di JQ1 e come funzionano in cellule.
Olaf Wiest, docente e ricercatore dell’università di Notre Dame, ha indicato che la molecola è meno flessibile in presenza di una proteina, e spiega perché la ostruisce così efficacemente; ed Andrew Kung, ha costruito i modelli animali in cui la molecola potrebbe essere provata contro i tumori di NMC.
I ricercatori hanno trapiantato le cellule di NMC dai pazienti in cavie da laboratorio, dotati di molecola JQ1.
“L’attività della molecola era notevole” – dice Bradner, che è inoltre un membro e socio del programma chimico di biologia dell’ istituto di Harvard e del MIT – “Tutti i topi alla quale è stato “impiantato” il JQ1 è sopravvissuto; tutti gli altri son morti”.
Per ora, JQ1 è il programma più utile per la comprensione del carcinoma, e Bradner e i suoi colleghi stanno studiando la molecola per elevarne l’efficacia.
Finalmente questa, o una simile molecola, può essere la base per la prima efficace terapia contro il cancro.
“La malattia tende a diffondersi nella cassa (? cassa toracica?), nella testa, o nel collo, lungo la linea centrale verticale del corpo (vertical centerline of the body, è la colonna vertebrale?) con sviluppo di tumore e metastasi aggressivi”, spiega Bradner.
Diverso della maggior parte dei cancri, il tessuto del NMC non è conosciuto. È una malattia definita interamente dalla relativa firma genetica (la presenza del gene spostato BRD4-NUT) e prima della relativa identificazione genetica da parte di Christopher French non era mai stata riconosciuta come malattia distinta.
“Questa ricerca ulteriore illustra la promessa della medicina,cioè la capacità di trasportare le molecole selezionate alle proteine responsabili della malattia, con il minimo deglli effetti collaterali.
Lo sviluppo di JQ1 o di una molecola simile può produrre la prima terapia specificamente progettata per i pazienti con NMC”.
[spoiler]Il testo originale è nello spoiler sottostante.[quote][b]In the quest to arrest the growth and spread of tumors, there have been many attempts to get cancer genes to ignore their internal instruction manual. In a new study, a team led by Dana-Farber Cancer Institute scientists has created the first molecule able to prevent cancer genes from “hearing” those instructions, stifling the cancer process at its root.[/b]
The study, published online by the journal Nature, demonstrates that proteins issuing stop and start commands to a [url=http://www.physorg.com/tags/cancer+gene/]cancer gene[/url] – known as epigenetic “reader” proteins – can be targeted for future [url=http://www.physorg.com/tags/cancer/]cancer[/url] therapies. The research is particularly relevant to a rare but devastating cancer of children and young adults known as NUT midline carcinoma (NMC) – a disease so obstinate that no potential therapy for it has ever reached the stage of being tested in a clinical trial.
“In recent years, it has become clear that being able to control gene activity in cancer – manipulating which genes are ‘on’ or ‘off’ – can be a high-impact approach to the disease,” says the study’s senior author, James Bradner, MD, of Dana-Farber. “If you can switch off a [url=http://www.physorg.com/tags/cancer+cells/]cancer cell’s[/url] growth genes, the cell will die. Alternatively, switching on a tissue gene can cause a cancer cell to become a more normal tissue cell.”
In this study, Bradner’s lab synthesized a molecule that has both effects: by blocking a specific [url=http://www.physorg.com/tags/abnormal+protein/]abnormal protein[/url] in NUT midline carcinoma cells, it stops them from dividing so prolifically and makes them ‘forget’ they’re cancer cells and start appearing more like normal cells.
The assembled molecule affects the cell’s multi-layered apparatus for controlling [url=http://www.physorg.com/tags/gene+activity/]gene activity[/url], a set of structures collectively known as the epigenome. Vast portions of each gene play a regulatory role, dictating whether the gene is active, busily sending orders for new proteins, or inactive, and temporarily at rest. The gene’s DNA is packaged in a substance called [url=http://www.physorg.com/tags/chromatin/]chromatin[/url], which is the slate on which instructions to begin or cease activity are inscribed.
The instructions themselves take the form of “bookmarks,” substances placed on the chromatin by so-called epigenetic “writer” proteins. Another group of epigenetic proteins, known as “erasers,” are able to remove the bookmarks. Both types of proteins have successfully been disabled by scientists, using molecules made in the lab or taken from nature. Their success has sparked intense interest in the development of anti-cancer therapies that work by blocking such proteins.
A third variety of epigenetic proteins – potentially the most appealing as therapeutic targets, because they switch genes on or off by “reading” the bookmarks – has received scant scientific attention. Bradner and his colleagues turned to this little-explored corner of biology by focusing on NMC cells.
The disease is caused by a chromosomal “translocation,” in which two genes from different chromosomes become connected and give rise to an abnormal, fused protein known as BRD4-NUT. A review of the scientific literature suggested that some members of the benzodiazepine family of drugs, which includes Valium, Xanax and Ativan, are active against “bromodomain” proteins such as BRD4. With that as a clue, Bradner and his Dana-Farber colleague Jun Qi, PhD, created an array of molecules to see if any inhibited a “reader” protein of the BRD4-NUT gene. One did, quite convincingly – a hybrid molecule, which researchers named JQ1, for Qi.
The investigators worked with researchers in the U.S. and overseas to learn more about the properties of JQ1 and how it works in cells. Stefan Knapp, PhD, of Oxford University in England, provided crystal-clear images of the molecule bound to a protein; Olaf Wiest, PhD, of the University of Notre Dame, showed that the molecule is less flexible in the presence of a protein, explaining why it so effectively blocks the protein; and Andrew Kung, MD, PhD, of Dana-Farber, engineered animal models in which the molecule could be tested against NMC tumors.
The animal studies were especially encouraging. Investigators transplanted NMC cells from patients into laboratory mice, which were then given the JQ1 molecule.
“The activity of the molecule was remarkable,” says Bradner, who is also an associate member of the Chemical Biology Program at the Broad Institute of Harvard and MIT. “All the mice that received JQ1 lived; all that did not, died.”
For now, JQ1’s main utility is as a probe for better understanding the biology underlying NUT midline carcinoma. Bradner, Qi and their colleagues are tweaking the molecule to maximize its effectiveness as a BRD4-NUT stopper. Eventually, it, or a similar molecule, could be the basis for the first effective therapy against NMC.
“The disease tends to arise in the chest, head, or neck, along the vertical centerline of the body, with aggressive tumor growth and metastasis,” Bradner explains. “Patients may have a brief response to chemotherapy, but they eventually succumb to the spread of the disease.”
Unlike most cancers, NMC’s tissue of origin isn’t known. It is a disease defined entirely by its genetic signature – the presence of the translocated gene BRD4-NUT. Prior to its genetic identification by Christopher French, MD, of Brigham and Women’s Hospital and a study co-author, NMC wasn’t recognized as a distinct disease.
“This research further illustrates the promise of personalized medicine,” Bradner remarks, “which is the ability to deliver selected molecules to cancer-causing proteins to stop the cancer process while producing a minimum of residual side effects. The development of JQ1 or similar molecule into a drug may produce the first therapy specifically designed for patients with NMC.”
Provided by Dana-Farber Cancer Institute[/quote][/spoiler]
[url=http://www.physorg.com/news204556365.html]Fonte[/url].
Bazingato da Flavio Bernardotti su Facebook.
Se ci fossero imprecisioni di traduzione segnalatemele che le correggo. Aggiungo che non essendo un ricercatore qualche termine tecnico mi è ignoto; ho segnalato nell’ articolo quelli che non conosco.
[spoiler]Attendo un commento di Clostridium a riguardo.[/spoiler]
Speriamo sia di buon auspicio.